ГЕМОЛИТИЧЕСКАЯ АНЕМИЯ, ВЫЗВАННАЯ ФРАГМЕНТАЦИЕЙ ЭРИТРОЦИТОВ

Л.Б. Филатов¹, А.Ф. Томилов², Т.А Алексеева¹ ¹Екатеринбургский Консультативно-Диагностический Центр ²Уральская Государственная Медицинская Академия

Существуют гемолитические анемии, обусловленные механическим / травматическим разрушением эритроцитов. Синдром **механического гемолиза** устанавливается на основании обнаружения **шистоцитов** (син.: шизоциты, фрагментоциты, фрагментированные эритроциты) в мазке крови больного при наличии других признаков гемолиза в сочетании с гиперрегенераторным характером анемии:

- ретикулоцитоз;
- гипербилирубинемия (за счёт непрямой фракции);
- снижение уровня гаптоглобина;
- повышение уровня активности лактатдегидрогеназы (ЛДГ);
- гемоглобинурия и (или) гемосидеринурия;
- увеличение количества эритрокариоцитов в костном мозге.

Среди механических гемолитических анемий есть ряд тяжёлых заболеваний, требующих оперативной диагностики и незамедлительного лечения, поэтому выявление шистоцитов в мазке крови является тревожным сигналом для лечащего врача. Врач-лаборант должен немедленно сообщить ему о такой находке.

ШИСТОЦИТЫ

ПРОБЛЕМА ИДЕНТИФИКАЦИИ ШИСТОЦИТОВ. Исследование проблем, связанных с поиском шистоцитов, определением признаков шистоцитов проводилось Французской группой клеточной гематологии (GFHC). Опыт её членов свидетельствует: распознавание шистоцитов в мазке крови сопряжено с серьёзными трудностями [1]. В 2000—2003 гг. французские исследователи проанализировали мнение около сотни врачей-лаборантов по вопросам идентификации шистоцитов и оценки шистоцитоза. Анализ полученных данных выявил большие расхождения в результатах (50% случаев) [1].

Формирование консенсуса в определении характеристик эритроцита, который может называться шистоцитом, оказалось сложным процессом. Для решения проблемы были выделены признаки шистоцита, которые должны присутствовать в его описании:

- 1. "Угол" вне зависимости от формы. Должно быть, по крайней мере, два угла;
- 2. "Фрагмент" с потерей размера (площади, объёма) по отношению к изначальной клетке и с наличием линии, указывающей на разлом [1, 2].

Черты деформированных эритроцитов, являющихся, по мнению французских экспертов, шистоцитами, отражены на рисунке 1.

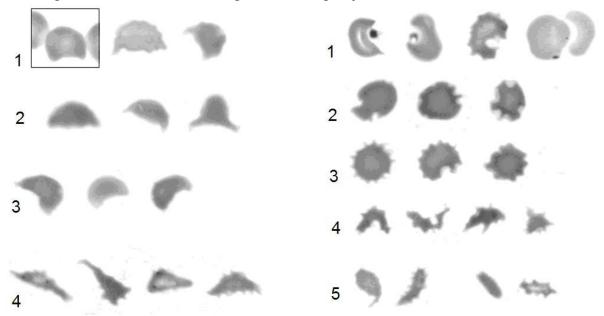


Рис. 1. Шистоциты и эритроциты, не относящиеся к шистоцитам

Слева – шистопиты.

- 1. большие фрагменты, образующиеся при разделении эритроцита на неравные части;
- 2. два фрагмента, равные почти половине эритроцита, правый фрагмент шляпка;
- 3. полумесяцы;
- 4. треугольники.

Справа – клетки, которые не относятся к шистоцитам.

- 1. эритроциты, деформированные при изготовлении мазка тромбоцитами или другим эритроцитом;
- 2. «выкушенные» и «выщербленные» эритроциты, деформация третьего в ряду может быть обусловлена нарушением техники фиксации мазка;
- 3. эхиноциты (левый с необычно острыми выступами шипами, средний «выкушенный».
- 4. причудливые формы фрагментов;
- 5. фрагменты в виде запятой или палочки.

Таким образом, **шистоциты** – это фрагменты эритроцитов, выявляемые в мазке крови, в виде:

- полумесяца, с двумя-тремя острыми выступами,
- шлема (каски),
- треугольника,
- маленького неправильной формы фрагмента, имеющего линию разлома [1, 3, 4].

Международный Совет по Стандартизации в Гематологии (ICSH) разработал рекомендации по идентификации шистоцитов. Было предложено также считать шистоцитами микросфероциты (при наличии в мазке крови шистоцитов другой формы) [4a].

МЕХАНИЗМЫ ОБРАЗОВАНИЯ ШИСТОЦИТОВ. Образование шистоцитов может происходить при различных условиях [2]:

1. в результате фрагментации эритроцита (нитями фибрина, на тромбоцитарных агрегатах в микрососудах; протезами сердечных клапанов (рис. 2); в процессе забора крови и приготовления мазка: в системе диализа и т.д.), когда эритроцит, ломаясь на две (часто неравные) части, порождает фрагменты, имеющие тенденцию к повторной сферизации;

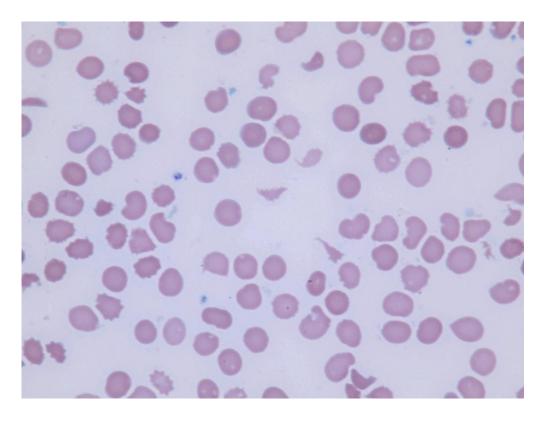


Рис. 2. Шистоциты в мазке крови больного с механической гемолитической анемией, вызванной протезом сердечного клапана

- 2. в связи с аномалиями мембраны эритроцита, обусловленной дефектами белков мембраны эритроцита, в силу хрупкости цитоскелета;
- 3. при нагревании мембраны эритроцитов (ожог эритроцита), провоцирующем отделение части эритроцитов в виде почек или фрагментов, близких по форме к шистоцитам; эти фрагменты также имеют тенденцию к сферизации.

Очень важным для врача-лаборанта является знание, какие фрагменты эритроцитов, встречающихся в мазке, надо, а какие – нельзя относить к шистоцитам, рис.1. Спорный вопрос – можно ли относить к шистоцитам фрагменты эритроцитов в виде палочек и запятых [2], был снят [1], их было решено не считать шистоцитами.

"Почкование эритроцитов" может наблюдаться при пиропойкилоцитозе (редком варианте гемолитической анемии) или при нагревании образца крови

свыше 50°С, например, при транспортировке [3]. Такие "почки" – очень мелкие сфероциты (рис.3, 4) – также не следует относить к шистоцитам.

Мы наблюдали выраженный анизоцитоз и пойкилоцитоз, включая микросфероциты и "почки" в мазках костного мозга, когда при пункции грудины аспирация была сделана неостывшим шприцем после стерилизации в сухожаровом шкафу (рис. 3). Лаборанты сообщили о необычном мазке, встал вопрос о неотложной ситуации. Однако в мазке крови, сделанном в этот же день, эритроциты были совершенно нормальны. После выяснения у врача деталей получения костного мозга у больной причина была установлена.

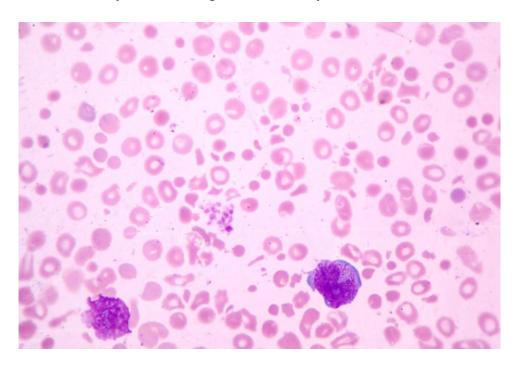


Рис. 3. Мазок костного мозга при аспирации нагретым шприцем

Иногда в мазках крови можно видеть отделение "почек" эритроцитов нитью фибрина (рис.5), что происходит в момент приготовления мазка при синдроме диссеминированного внутрисосудистого свёртывания крови (ДВС). Вероятно, это происходит и в крови in vivo при синдроме ДВС, в результате чего в мазках может наблюдаться большое количество "почек" (рис.4).

Серьёзной клинической проблемой является диагностика тромботической микроангиопатии (ТМА), когда шистоциты образуются в результате действия первого механизма (см. выше). Задача врача-лаборанта — чётко сказать клиницисту, присутствуют в мазке крови шистоциты или нет.

ПОИСК ШИСТОЦИТОВ В МАЗКЕ КРОВИ (рекомендации GFHC). Поиск шистоцитов французские специалисты рекомендуют [1, 2]:

– проводить на правильно сделанном мазке в очень ограниченной области однородного распределения клеток без их перекрывания, где подсчитывается лейкоцитарная формула, в силу возможной сферизации фрагментов "в хвосте" мазка и по его кромкам;

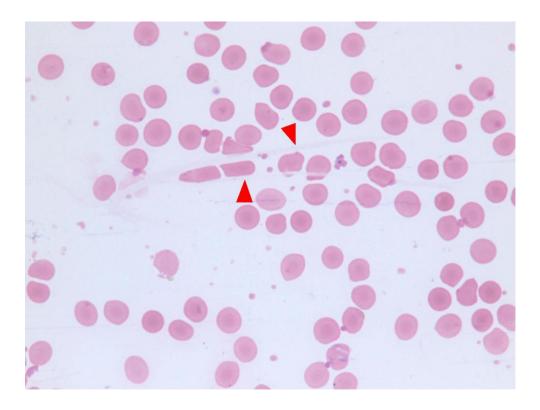


Рис. 4. Две нити фибрина (стрелки) деформируют и разрезают эритроциты. Большое количество «почек» эритроцитов

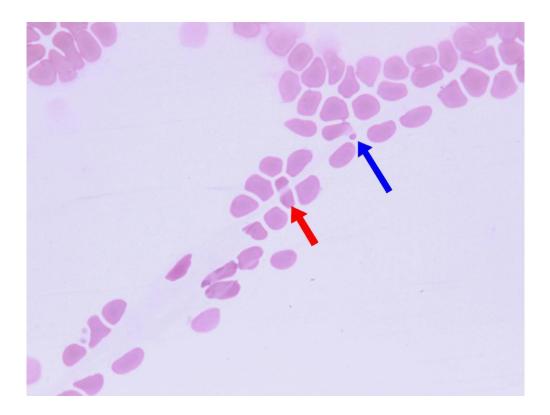


Рис. 5. Нить фибрина разрезает эритроцит на две части (красная стрелка) и отделяет «почку» от эритроцита (синяя стрелка)

- осуществлять при среднем увеличении (от $\times 200$ до $\times 400$) на количестве полей, позволяющем рассмотреть 1000-5000 клеток и выбрать из них шистоциты; анализ меньшего количества эритроцитов недостаточен;
- начинать с выявления фрагментов эритроцитов в форме каски; если фрагменты такой формы обнаруживаются, то присутствие фрагментов эритроцитов в форме треугольника или в форме полумесяца подтверждает диагноз механического гемолиза.

АВТОМАТИЧЕСКИЙ ПОДСЧЁТ ШИСТОЦИТОВ. В последние годы появились лабораторные анализаторы (Advia, Sysmex XE), подсчитывающие количество фрагментов эритроцитов (**F**ragmented **R**ed **C**ell (FRC)). Но автоматический подсчёт применяется только для исследований. Чувствительность метода — 100%, но из-за низкой его специфичности (20%) при аппаратных находках шистоцитов необходимо микроскопическое исследование для их подтверждения. Нормальное количество шистоцитов при подсчёте автоматическим способом — 0.03—0.58%. [1, 5, 6].

ШИСТОЦИТОЗ. Обычно в крови нет шистоцитов. Но приспособления для забора крови с отрицательным давлением могут приводить к фрагментации нескольких самых хрупких клеток; фрагменты эритроцитов могут образовываться в результате приготовления мазка [1].

Поэтому изредка в мазке крови могут обнаруживаться артефакты, появление которых обусловлено процессом забора крови и приготовлением мазка [2]. Нормальное количество шистоцитов в мазке крови при подсчёте традиционным способом врачом-лаборантом -0-0,27% от общего количества эритроцитов [2, 7].

Шистоцитоз (превышение нормального уровня количества шистоцитов) [3] — признак механической гемолитической анемии, которая характерна для нескольких групп заболеваний (табл. 1). Среди множества диагнозов, при которых наблюдаются шистоциты, лишь часть нуждается в срочной диагностике. Выявленный шистоцитоз, являясь краеугольным камнем в диагностике ряда тяжёлых заболеваний, требует от врача-лаборанта и врача-клинициста быстрых действий по установлению диагноза.

От врача-лаборанта необходим чёткий ответ на вопрос: "Присутствуют шистоциты в мазке крови или нет?". Необходимость ясности в этом вопросе обусловлена клинической важностью шистоцитоза для диагностики тромботических микроангиопатий, характеризующихся плохим прогнозом без своевременно начатой адекватной терапии. Это требует от врача-клинициста оперативных действий по подтверждению или опровержению диагноза ТМА и особого внимания к больным с впервые выявленным неиммунным гемолизом: в каждом случае необходимо ставить вопрос о микроангиопатической гемолитической анемии и проводить подсчёт шистоцитов. Игнорирование шистоцитов в мазке крови препятствует диагностике этих заболеваний, приводя к тяжёлым последствиям для больных.

Таблица 1

МЕХАНИЧЕСКАЯ ГЕМОЛИТИЧЕСКАЯ АНЕМИЯ [1–3, 8–11]

NEATH LECKAL EMOUNT IN TECKAL ATEMAL [1-3, 0-11]	
ВИД ПАТОЛОГИИ	НОЗОЛОГИЧЕСКАЯ ФОРМА
І. Механическая гемолитическая анемия, вызванная	1. ТРОМБОТИЧЕСКИЕ МИКРОАНГИОПАТИИ:
фрагментацией эритроцитов в микрососудах	1.1. тромботическая тромбоцитопеническая пурпура (ТТП, синдром/ болезнь Мошковица):
	1.2. гемолитико-уремический синдром (ГУС):
	1.3. HELLP-синдром ¹
	2. ТМА-АССОЦИИРОВАННЫЕ СИНДРОМЫ
	2.1. ДВС-синдром
	2.2. катастрофический антифосфолипидный синдром
	2.3. злокачественная артериальная гипертензия
	2.4. преэклампсия/ эклампсия
II. Механическая гемолитическая анемия,	– изменённые/протезированные клапаны сердца
вызванная патологией сердечно-сосудистой системы	– аортальный стеноз
	– артерио–венозная фистула
	– аневризма аорты
	– миксома предсердия
	– эндокардит
	 искусственный желудочек сердца
III. Механическая гемолитическая анемия,	– гемангиомы
вызванная сосудистыми аномалиями	– гемангиосаркомы
	 – плексиформные сосуды в лёгких при лёгочной гипертензии и в печени при циррозах
IV. Механическая гемолитическая анемия,	 мегалобластная анемия
вызванная особенностями эритроцитов,	 наследственный пиропойкилоцитоз
определяющими их склонность к фрагментации	 – гемоглобинопатия Н
	 врождённая дизэритропоэтическая анемия
V. Механическая гемолитическая анемия,	маршевая гемоглобинурия ²
вызванная разрушением эритроцитов в капиллярах	
стоп под воздействием внешнего фактора	
VI. Механическая гемолитическая анемия,	ОЖОГИ
вызванная термическим разрушением эритроцитов	

 $^{^{1}}$ Hemolysis (H – гемолиз), elevated liver enzymes (EL – увеличение печёночных ферментов), low platelet count (LP – низкое количество тромбоцитов) 2 При маршевой гемоглобинурии в мазках крови фрагменты эритроцитов отсутствуют [12].

Механическая гемолитическая анемия в зависимости от места гемолиза может быть микроангиопатической или макроангиопатической.

МИКРОАНГИОПАТИЧЕСКАЯ ГЕМОЛИТИЧЕСКАЯ АНЕМИЯ

МикроАнгиопатическая Гемолитическая Анемия (МАГА) характеризуется:

- снижением гемоглобина;
- шистоцитами в мазке крови;
- ретикулоцитозом;
- гипербилирубинемией (за счет непрямой фракции);
- снижением уровня гаптоглобина;
- отрицательным прямым антиглобулиновым тестом (или отрицательной пробой Кумбса);
- повышением уровня лактата дегидрогеназы (ЛДГ отражает как степень гемолиза, так и ишемию тканей).

Фрагментация эритроцитов происходит в мелких сосудах (капиллярах, прекапиллярах, концевых артериолах). Так как первичным процессом является образование тромбов, такие состояния называют тромботическими микроангиопатическими гемолитическими анемиями (синоним – Тромботические МикроАнгиопатии (ТМА)).

ТРОМБОТИЧЕСКАЯ МИКРОАНГИОПАТИЯ — клинический синдром, характеризующийся:

- тромбоцитопенией;
- микроангиопатической гемолитической анемией (неиммунная гемолитическая анемия с шистоцитами в мазке крови);
- микроваскулярным тромбозом концевых артериол и капилляров с множественной дисфункцией органов.

К ТМА относят тромботическую тромбоцитопеническую пурпуру (ТТП), гемолитико-уремический синдром (ГУС), возникающий при беременности HELLP-синдром. Выделяют также ТМА-ассоциированные синдромы: ДВС-синдром, катастрофический антифосфолипидный синдром, злокачественную гипертензию, преэклампсию. Учитывая, что ТМА представляет собой остро протекающее заболевание, которое без своевременной терапии приводит к гибели больных, очень важна его быстрая диагностика (обнаружение шистоцитов, анемии с ретикулоцитозом, гипербилирубинемии, тромбоцитопении).

Шистоцитоз является необходимым диагностическим признаком TTП.

ТРОМБОТИЧЕСКАЯ ТРОМБОЦИТОПЕНИЧЕСКАЯ ПУРПУРА (болезнь Мошковица)

Тромботическая тромбоцитопеническая пурпура (ТТП, болезнь Мошковица, впервые описана *E. Moschcowitz*, 1924 г. [13]). По оценкам экс-

пертов, частота возникновения ТТП в США — 4—11 случаев в год на 1 млн. жителей [14, 15], по данным регистра больных ТТП Юго-Восточной Англии частота ТТП составляет 6 случаев в год на 1 млн. жителей [16]. В регистре Юго-Восточной Англии (178 больных ТТП) соотношение мужчин и женщин — 1:3, медиана возраста у мужчин — 46 лет, у женщин — 39 [16]. Смертность при ТТП без соответствующего лечения — около 100% [17], выживаемость при адекватной терапии — 71—91% [18, 19].

Уровень активности ADAMTS-13 (<u>A</u> <u>D</u>isintegrin <u>A</u>nd <u>M</u>etalloprotease with <u>T</u>hrombo<u>S</u>pondin type 1 motif 13 – металлопротеазы, разрезающей первичные мультимеры фактора фон Виллебранда на молекулы необходимого для выполнения его функций размера) < 5% специфичен для ТТП [20]. У большинства больных с тяжёлым дефицитом ADAMTS-13 (< 5%) определяются антитела к ADAMTS-13, до 90% это – IgG [21–23], хотя редко выявляются IgM [24], недавно были описаны случаи обнаружения IgA [25]. В то же время, активность ADAMTS-13 выше 5% не исключает диагноз ТТП.

Формы вторичной ТТП (на фоне беременности; лекарственная ТТП (аутоиммунная (тиклопедин, клопидогрель, хинин) и дозозависимая (циклоспорин А, такролимус, митомицин С, гемцитабин)); на фоне инфекции (*Escherichia coli*; ВИЧ); на фоне аутоиммунных заболеваний; после трансплантации костного мозга и органов; на фоне онкологических заболеваний) могут существенно различаться по активности ADAMTS-13 и наличию антител [26-31].

КЛИНИКА. Специфических клинических симптомов у ТТП нет, заболевание развивается, как правило, внезапно на фоне полного здоровья [32]. В 14–77% случаев ТТП [33, 34] наблюдается классическая пентада [цит. по: 17]:

- 1. тромбоцитопения 100% [35—37], часто количество тромбоцитов < $30x10^9/\pi$ (ср. $18x10^9/\pi$); у большинства пациентов геморрагический синдром;
- 2. микроангиопатическая гемолитическая анемия (неиммунная гемолитическая анемия с шистоцитами в мазке крови) 100% [35–37];
 - 3. неврологические нарушения 59–92% [36, цит. по: 38];
 - 4. поражение почек 41–96% [19, 36];
 - 5. лихорадка 24–98% [18, цит. по: 38].

Поражение сердца в момент диагностики ТТП отмечается у 42% пациентов [16]. При ТТП у значительной части пациентов (35%) возникают сильные боли в животе, тошнота, рвота, обусловленные неокклюзивной абдоминальной ишемией [39]. Редкой манифестацией ТТП может быть панкреатит, гепатит, рабдомиолиз, острый респираторный дистресс-синдром, периферический ишемический синдром, гангрена кожи.

Лабораторные исследования, наряду с МАГА, тромбоцитопенией и изменениями в анализах мочи, выявляют нормальное или незначительно уве-

личенное количество лейкоцитов, нормальное или незначительно увеличенное протромбиновое время и активированное парциальное тромбопластиновое время, на поздних стадиях может присоединяться ДВС—синдром [40].

ДИАГНОСТИКА. Достаточным основанием для диагноза, при условии отсутствия других клинически установленных причин заболевания, является диагностическая диада:

- 1. МАГА (неиммунная гемолитическая анемия с шистоцитами в мазке крови);
 - 2. тромбоцитопения [18].

Шистоцитоз возникает почти у 100% больных ТТП (в мировой литературе есть лишь единичные описания ТТП без шистоцитов), но необходимо учитывать, что в течение первых двух дней в крови больных ТТП шистоцитоза может не быть [17, 18]. Количество обнаруживаемых при ТТП шистоцитов: 1–18,4% от общего количества эритроцитов (в среднем – 8,35% [17]). Считается, что достаточным аргументом в пользу ТТП является доля шистоцитов, превышающая 1% [17, 41]. Диагностическим признаком при посттрансплантационной ТТП выступает количество шистоцитов > 4% [42].

ЛЕЧЕНИЕ начинается незамедлительно, несмотря на возможные сомнения в диагнозе. Существуют трудности в дифференциальной диагностике с сепсисом, диссеминированной опухолью, диффузными болезнями соединительной ткани. Дальнейший диагностический поиск продолжается на фоне **базовой терапии**:

- 1. плазмозамена 40—60 мл/ кг в сутки. Когда плазмозамена не может быть проведена немедленно, начинаются инфузии свежезамороженной плазмы 15—25 мл/ кг в сутки.
 - 2. преднизолон 1 мг/ кг (подробнее о лечении ТТП см. [43]).

В ряде протоколов при отсутствии эффекта от плазмозамены (отсутствие нормализации количества тромбоцитов и купирования неврологической симптоматики), обострении (падение тромбоцитов в течение 30 дней после отмены плазмозамен) и рецидивах применяется ритуксимаб (375 мг/м² 1 раз в неделю 4 раза) [32, 44].

В 2011 году опубликованы результаты II фазы исследования эффективности ритуксимаба в качестве первой линии терапии у 40 больных с острой ТТП (375 мг/м² 1 раз в неделю 4 инфузии, при необходимости количество введений увеличивали до 8). Препарат начинал вводиться в первые три дня терапии дополнительно к плазмозаменам и глюкокортикостероидам. В сравнении с историческим контролем (40 пациентов) не было различий в количестве плазмозамен до ремиссии, но получено существенное снижение частоты рецидивов с 57% до 10% [45].

У части пациентов, лечившихся ритуксимабом, нормализовалась активность ADAMTS-13 (однако не у всех она поддерживалась) и было отмечено исчезновение антител к ADAMTS-13 [46].

НАСЛЕДСТВЕННАЯ ТРОМБОТИЧЕСКАЯ ТРОМБОЦИТОПЕНИЧЕСКАЯ ПУРПУРА

(синдром Апшо-Шульмана)

Синдром Апшо-Шульмана (СА-Ш, наследственная ТТП). Irving Schulman с соавторами (1960 г.) описал историю болезни 8-летней девочки с рецидивирующей тромбоцитопенией, у которой был достигнут хороший эффект при лечении плазмой [47]. Iefferson D. Upshaw (1978 г.) опубликовал историю болезни 29-летней женщины с рецидивирующей с 6-месячного возраста тромбоцитопенией и микроангиопатическим гемолизом, эффективно лечившейся трансфузиями свежезамороженной плазмы, и предположил связь болезни с наследственным дефицитом фактора, влияющего на продолжительность жизни тромбоцитов и эритроцитов [48]. Позднее наследственная ТТП получила название синдрома Upshaw-Schulman (синдрома Апшо-Шульмана).

Наследственная ТТП составляет не более 5% от всех случаев ТТП с дефицитом ADAMTS-13, частота которой, по данным *D.R. Terrell* с соавторами (2005 г.), составляет 2 случая на 1 млн. жителей в год [15]. Частота первого эпизода СА-Ш в разных возрастных группах различна: в неонатальном периоде болезнь проявляется у 43–47% пациентов (как правило, требует обменного переливания крови) [49, 50]; от 2 месяцев до 18 лет – у 32% пациентов; после 18 лет – у 16% пациентов [49] (описаны два брата с наследственной формой ТТП, проявившейся после 35 лет [20], описана манифестация болезни во время острой пневмонии у мужчины 61 года [51]). Тяжёлый дефицит ADAMTS-13 без развития клиники ТТП отмечен у 5% пациентов [49].

Механизм наследования СА-Ш — рецессивный. Известно более семидесяти мутаций гена *ADAMTS-13*, которые приводят к дефициту фермента или нарушению его высвобождения в кровь [49].

По мнению японских специалистов, у всех детей и беременных женщин с тромбоцитопенией необходимо исследовать уровень активности ADAMTS-13 [50].

В японском регистре (919 человек) больных ТМА (ТТП+ГУС) 4,46% составляют пациенты (41 человек) с наследственной ТТП, соотношение женщин и мужчин – 25:16. У всех больных выявлен тяжёлый дефицит ADAMTS-13, вызванный генетическими мутациями [50, 52]

КЛИНИКА. Клиническая характеристика СА-Ш в неонатальном периоде: выраженная желтуха за счёт непрямой гипербилирубинемии вследствие Кумбс-негативной гемолитической анемии с шистоцитами и тромбоцитопения (< 20х10⁹/л), может быть лихорадка. У большинства пациентов из-за массивной гемоглобинурии развивается острая почечная недостаточность (ОПН). Кровезамена обеспечивает нормализацию гематологических показателей [53].

При более позднем начале болезни толчком к развитию первого эпизода могут быть: инфекции, введение десмопрессина, хирургическая операция, беременность. Возможно, в развитии ТТП играет роль вакцинация [49]. В детстве у 79% больных наблюдается тромбоцитопения, которая ошибочно диагностируется как ИТП [50].

Тромбоцитопения развивается в начале каждого эпизода (100% случаев). Гемолитическая анемия возникает одновременно или через 12–24 часа. У трети нелеченных больных имеет место ишемическое поражение ЦНС (гемипарез, гемиплегия, афазия, судороги, кома с ишемическими изменениями на МРТ или без них), редко возникающее при неонатальных эпизодах. ОПН характерна для гемолитического криза. Часто происходит полное восстановление больных. Но у половины детей с СА-Ш, не получавших превентивную плазмотерапию, наблюдаются перманентные симптомы почечного поражения (протеинурия, хроническая почечная недостаточность (ХПН)). Терминальная стадия ХПН у подростков и взрослых развивается обычно после постоянно рецидивирующего течения болезни. Редко описываются ретинальные ишемии, инфаркт миокарда. При манифестации болезни у взрослых клиника острого эпизода аналогична идиопатической ТТП [53].

ДИАГНОСТИКА. Для СА-Ш характерен крайне низкий уровень активности ADAMTS-13, антител к ADAMTS-13 нет. Диагноз наследственная ТТП устанавливается на основании обнаружения мутации гена с помощью полимеразной цепной реакции [49] и секвенирования генов [53].

ЛЕЧЕНИЕ. Инфузии плазмы (5–10 мл/кг) каждые 2–4 недели без плазмозамены должны предотвращать развитие рецидива [28, 54]. В случае возникновения инфекции или при проведении оперативного лечения необходимо сократить интервал между ведениями до 1–2 недель [53].

РЕЦИДИВ. Для СА-Ш характерны рецидивы. Интервалы между эпизодами непредсказуемы и могут продолжаться 2–3 недели [41] (у трети пациентов длительность интервала – до нескольких лет [53]). Рецидивы начинаются со снижения тромбоцитов за 24-48 часов от $150 \times 10^9 / \text{л}$ до $10-20 \times 10^9 / \text{л}$ и снижения гемоглобина < 100 г/л. Между рецидивами обычно происходит полное восстановление, хотя у некоторых пациентов сохраняется хроническая тромбоцитопения и гемолиз, осложняющийся билиарным литиазом [53].

НАСЛЕДСТВЕННАЯ ТТП И БЕРЕМЕННОСТЬ. При нормальной беременности уровень фактора фон Виллебранда повышается в 2–5. Во II–III триместре появляется тромбоцитопения, часто вслед за ней развивается МАГА и ТТП [50]. Развитие болезни во время беременности опасно для плода. В половине случаев отмечается мертворождение или гибель младенцев вскоре после родов, почти все выжившие рождаются недоношенными. В случае применения профилактических инфузий плазмы с восьмой недели беременности, дети рождаются здоровыми и доношенными [50, 55].

Одним из заболеваний, относящихся к ТМА, диагностическим критерием которого выступает МАГА (неиммунная гемолитическая анемия с шистоцитозом в мазке крови), является ГУС.

ГЕМОЛИТИКО-УРЕМИЧЕСКИЙ СИНДРОМ (болезнь Гассера)

Гемолитико-уремический синдром (ГУС, болезнь Гассера, впервые описана *С.Е. von Gasser* с соавторами, 1955 г. [56]). Типичный ГУС (ассоциированный с диареей/ Д+ГУС) диагностируется у 90% пациентов с данной патологией. Установлена связь этой формы ГУС с энтерогеморрагической *Escherichia coli*, продуцирующей шига-токсин. Большинство случаев (70–80%) ГУС вызвано *Е. coli* О157:Н7. Причиной ГУС могут быть и другие серотипы кишечной палочки (О111:Н8, О103:Н2, О104:Н4, О121, О145, О26, О113, О55:Н7 и т.д.) или *Shigella dysenteriae* типа 1 [28, 57–59]. Общая частота типичного ГУС оценивается как 2,1 случая на 100 000 населения в год [57]. У взрослых заболевание возникает в 10 раз реже, чем у детей [60]. Заражение происходит через контаминированную пищу и воду. ГУС развивается у 3%—15% инфицированных пациентов [61].

Для заболевания характерно острое начало МАГА, тромбоцитопении и поражения почек (протеинурия, гематурия, артериальная гипертензия, олигурия/анурия) [28]. Развитию ГУС предшествуют боли в животе и понос, который в течение двух дней становится кровавым у 70% заболевших, тошнота (30–60% пациентов), лихорадка (треть больных). Количество лейкоцитов в крови, как правило, повышено. Может возникать поражение центральной нервной системы (ЦНС), сердца, желудочно-кишечного тракта, поджелудочной железы, печени. ГУС в большинстве случаев диагностируется через 6 дней после начала диареи [57].

Некоторые авторы рассматривают типичный ГУС у взрослых как особую форму болезни, отличающуюся от Д+ ГУС у детей [26]. Клиническое проявление Д+ ГУС у взрослых с поражением ЦНС (81%, тяжёлое (67%): нарушение сознания, судороги) и высокая летальность (31–45%) [60, 62] обусловливают сходство этой формы ГУС с идиопатической ТТП у пациентов с тяжёлым дефицитом ADAMTS-13 (<5%). Но для Д+ ГУС характерны высокая частота острой почечной недостаточности (ОПН – 62%) и отсутствие рецидивов [60].

Атипичный ГУС (бездиарейный/ Д-ГУС) у 50% пациентов обусловлен дисрегуляцией в системе комплемента, вызванной: мутацией генов регуляторов комплемента (факторов комплемента Н, І, мембранного кофакторного протеина (CD46)); мутацией генов активаторов комплемента (факторов комплемента В и С3); аутоантителами против фактора Н [63]. Кроме того, ДГУС может развиться на фоне инфекции (*Streptococcus pneumoniae*, вирус иммунодефицита человека), после приёма лекарств, на фоне опухолей, после

трансплантации органов и тканей, во время беременности, после родов, при аутоиммунных болезнях. Также может быть идиопатический атипичный ГУС [57].

ДИАГНОСТИКА. Диагностические критерии ГУС (диагностическая триада):

- 1. MAΓA;
- 2. тромбоцитопения;
- 3. поражение почек.

Шистоцитоз возникает у 100% больных с ГУС. Лабораторные исследования выявляют нормальные или несколько удлинённые протромбиновое время и активированное парциальное тромбопластиновое время. Содержание фибриногена в плазме нормальное или повышенное, концентрация продуктов деградации фибрина может быть увеличена. Уровень активности ADAMTS-13 при данной патологии нормальный [28].

Клинические симптомы ГУС, особенно при поражении ЦНС, мало отличаются от ТТП, их дифференциация сложна. Некоторые специалисты рассматривают ТТП и ГУС как одно заболевание — ТТП—ГУС [17], хотя при типичном ГУС активность фермента ADAMTS-13 нормальная. [41, 54].

ЛЕЧЕНИЕ. Не имеется доказательств, полученных в рандомизированных исследованиях, о пользе плазмозамены при постдиарейном ГУС у взрослых. Несмотря на это, большинство авторов (учитывая более тяжёлое течение болезни и высокую летальность у взрослых больных по сравнению с детьми) рекомендуют плазмозамены в качестве первой линии терапии при Д+ ГУС у взрослых. Иммуносупрессивная терапия в данном случае не рекомендуется [14]. Значительной части (70%) пациентов с Д+ ГУС требуются трансфузии эритроцитов. В проведении гемодиализа нуждаются 50% больных [57]. При атипичном ГУС плазмозамена является необходимым элементом терапии [57].

Появились первые сообщения об эффективности экулизумаба (моноклонального антитела к фактору С5 комплемента) при атипичном ГУС у детей и взрослых и постдиарейном ГУС у детей [64–66].

К ТМА относят HELLP-синдром, для которого МАГА (неиммунная гемолитическая анемия с шистоцитозом в мазке крови) является необходимым диагностическим критерием как для ТТП и ГУС.

HELLP-СИНДРОМ

HELLP-синдром. Сочетание тяжёлой эклампсии, гемолиза и тромбоцитопении было описано *E. Stahnke* (1922 г.) [цит. по: 67]. *L. Weinstein* (1982 г.) ввёл название синдрома и диагностические критерии заболевания [68].

КЛИНИКА. Тромбоцитопения и нарушение печёночной функции могут возникать без существенной артериальной гипертензии и протеинурии. Кли-

нические проявления: тошнота, слабость, боли в эпигастрии или правом подреберье, отёки. HELLP—синдром может осложняться: ДВС—синдромом (21%), отслойкой плаценты (16%), ОПН (8%), отёком лёгких (6%) [69]. HELLP—синдром чаще возникает в период с 27-ой по 36-ую неделю беременности, раньше этого срока HELLP—синдром развивается 10% случаев; он может развиваться и в разные сроки (до 6 суток) после родов — 20% [70].

ДИАГНОСТИКА. Диагностические критерии HELLP-синдрома:

- 1. MAΓA;
- 2. тромбоцитопения $< 100 \text{ x} 10^9 / \pi$;
- 3. ACT (аспартат аминотрансфераза) > 70 ед./л [68].

Шистоцитоз наблюдается во время беременности также при преэклампсии/эклампсии, возможно его развитие при острой жировой дистрофии печени; при ТМА, возникшей на фоне диффузных болезней соединительной ткани. Кроме того, существуют формы ТТП и ГУС, разворачивающиеся на фоне беременности. Диагностика ТМА при беременности осложняется возможностью развития при преэклампсии и HELLP—синдроме ТТП-подобной симптоматики, а при поражении почек у больных системной красной волчанкой требуется дифференциальная диагностика с ГУС.

ЛЕЧЕНИЕ. Срочное родоразрешение при HELLP-синдроме, как правило, улучшает состояние пациенток [29].

МАКРОАНГИОПАТИЧЕСКАЯ ГЕМОЛИТИЧЕСКАЯ АНЕМИЯ

Макроангиопатическая гемолитическая анемия (механическая гемолитическая анемия при сердечно-сосудистых заболеваниях) чаще возникает после оперативного лечения: протезирование аортального/ митрального клапанов, пластика дефекта межпредсердной перегородки, закрытие артериального протока [71, 72]. Кроме того, фрагментация эритроцитов развивается при неоперированных пороках (кальцинировнный стеноз аорты), коарктации аорты, разрыве хорд, [71], вегетации при бактериальном эндокардите [10], миксоме предсердия, при использовании искусственного желудочка сердца [9].

ГЕМОЛИТИЧЕСКАЯ АНЕМИЯ, ВЫЗВАННАЯ ПРОТЕЗОМ КЛАПАНА СЕРДЦА

В 60–70 годы XX века после введения в широкую практику протезирования клапанов сердца гемолитическая анемия развивалась у 5–15% пациентов, перенёсших операцию [71, 73]. Использование протезов нового поколения снизило частоту гемолитической анемии до < 1% [71]. Однако, компенсированный гемолиз может возникнуть при любом типе протеза и может наблюдаться почти у каждого пациента с протезом сердечного клапана [74,75].

ФАКТОРЫ РАЗВИТИЯ ГЕМОЛИЗА. Выделяют несколько факторов, которые могут вызывать гемолиз при протезировании сердечного клапана [10, 71, 73]:

- турбулентность/ завихрения (турбулентный ток крови через/ вокруг протеза клапана);
- перепады давления между сердечными камерами (градиент трансвальвулярного давления более 50 мм рт. ст. может вызвать срезывающую силу, превосходящую 4000 дин/ cm^2 , фрагментация эритроцитов обычно происходит уже при 3000 дин/ cm^2);
 - внутренние аномалии мембраны эритроцитов;
 - взаимодействие с материалом протеза;
- гемодинамические характеристики клапана (скорость кровотока в области клапана);
 - парапротезная фистула.

Гемолиз может возникать после эмболизации открытого артериального протока спиралью с дакроновыми волокнами. При неполной окклюзии возникает резидуальный высокоскоростной ток крови, приводящий к разрушению эритроцитов как в первые часы/ сутки после операции, так и в более поздние сроки [76].

Из фрагментированных в сосудистом русле эритроцитов высвобождаются ЛДГ и гемоглобин. Свободный гемоглобин плазмы связывается с гаптоглобином с высокой степенью афинности. Комплекс гаптоглобин-гемоглобин в свою очередь связывается с CD163 на макрофагах. В последующем комплекс захватывается макрофагами и подвергается деградации. При выраженном внутрисосудистом гемолизе, когда высвобождается большое количестве гемоглобина, содержание гаптоглобина в сыворотке снижается до полного исчезновения. Сохраняющийся в плазме свободный гемоглобин в этой ситуации связывается с белком гемопексином, в связанном состоянии он присоединяется к СD91 (рецептору альфа2-макроглобулинов), экспрессированному на моноцитах, макрофагах, в том числе тканевых (клетки Купфера, альвеолярные макрофаги). Комплекс гемоглобин-гемопексин захватывается этими клетками и подвергается лизосомальной деградации. При избытке свободного гемоглобина гемопексин расходуется на его связывание. Оставшийся избыточный, не связанный гаптоглобином и гемопексином гемоглобин определяется в плазме [9, 77].

Уровень свободного гемоглобина плазмы зависит не только от степени гемолиза, но и от содержания гаптоглобина и гемопексина, фильтрации гемоглобина в почках, скорости разрушения комплексов гемоглобина с гаптоглобином и гемопексином [72].

КЛИНИКА. Гемолиз может проявляться симптомами анемии и сердечной недостаточности. Выраженность анемии зависит от степени гемолиза, она может быть лёгкой, средней и тяжёлой [71]. Наблюдается бледность кожи,

слизистых, желтуха, моча может быть прозрачной красной, мутной коричневой или чёрной. Физические нагрузки, приводящие к усилению работы сердца, могут провоцировать увеличение степени гемолиза, в состоянии покоя гемолиз может ослабевать. Иногда возникает порочный круг, когда прогрессирующий гемолиз приводит к анемии, которая в свою очередь усиливает работу сердца, в результате нарастает фрагментация эритроцитов и анемия [78].

При длительно протекающем гемолизе развивается дефицит железа, вызванный потерей железа в виде гемоглобина и гемосидерина с мочой. Кроме того, хронический гемолиз приводит к дефициту фолиевой кислоты. Оба эти фактора могут усиливать тяжесть анемии.

ДИАГНОСТИКА. В мазке крови наблюдается пойкилоцитоз, шистоцитоз и полихромазия. Эритроциты обычно нормохромные и нормоцитные, но иногда могут быть гипохромными и микроцитными из-за дефицита железа. Количество ретикулоцитов, гемосидерина в моче, гемоглобина плазмы, прямого и непрямого гемоглобина и уровень активности ЛДГ повышены, уровень гаптоглобина сыворотки снижен. Количество шистоцитов и уровень активности ЛДГ коррелируют с тяжестью гемолиза. Гемоглобинурия обнаруживается только при очень тяжёлом гемолизе. Нет корреляции между уровнем гемолиза и уровнем билирубина [71].

E. Eyster с соавторами (1971 г.) предложили критерии оценки тяжести гемолиза, вызванного протезом клапана:

- лёгкий гемолиз: шистоцитоз < 1%, ретикулоцитоз < 5%, ЛДГ < 500 ед.;
- гемолиз средней тяжести: шистоцитоз > 1%, ретикулоцитоз > 5%, ЛДГ > 500 ед.;
- тяжёлый гемолиз: шистоцитоз > 1%, ретикулоцитоз > 5%, ЛДГ > 500 ед., гемоглобинурия [79].

MPT почек обнаруживает снижение интенсивности сигнала коры почек [71].

ЛЕЧЕНИЕ. В случае тяжёлого гемолиза может потребоваться повторная операция. Риск летальности при повторной операции составляет по одним данным 0–6% [71, 80], по другим – 10% [10].

При анемии лёгкой и средней степени тяжести в некоторых случаях эффективны бета-блокаторы, которые снижают скорость тока крови, обеспечивая уменьшение гемолиза [71]. В последнее десятилетие при данной патологии вошли в практику два новых метода лечения [81]:

- 1. эритропоэтин (30-40 тыс. ед./ в неделю) [74, 82],
- 2. пентоксифиллин (1200 мг в сутки), увеличивая эластичность мембраны эритроцитов и повышая тем самым их возможность изменять свою форму, уменьшает их фрагментацию [83].

Эффективность пентоксифиллина была доказана плацебо-контролируемым рандомизированным исследованием (2003 г.). В него было включено 40 пациентов, которым минимум за один год до исследования проводилась опе-

рация по протезированию двух клапанов (митрального и аортального): 20 пациентов получали пентоксифиллин (1200 мг в сутки) в течение 4 месяцев, 20 больных составили контрольную группу. Через 4 месяца в первой группе эффект в виде уменьшения степени гемолиза был получен у 12 пациентов (60%), во второй группе – только у 5% больных [83].

Все больные профилактически должны получать фолиевую кислоту (1 мг в сутки). Кроме того, периодически необходимо проводить лечение пациентов препаратами железа.

Рассмотрим случай гемолитической анемии, вызванной протезом аортального клапана.

Больной, 56 лет, был направлен к гематологу с диагнозом анемия неясного генеза. На приёме у гематолога (11.01.11) пациент предъявлял жалобы на слабость. Из анамнеза: 05.10.10 ему было выполнено протезирование аортального клапана. До операции уровень гемоглобина у пациента был нормальным (155 г/л). После операции у него развилась анемия, гемоглобин — 90–96 г/л, содержание железа, ферритина, витамина B_{12} и фолиевой кислоты в сыворотке крови — в пределах нормы, билирубин — 39,5 мкмоль/л (прямой — 10,5 мкмоль/л).

При осмотре наблюдалась умеренная бледность кожи, иктеричность склер, селезёнка не пальпировалась. Результаты лабораторных исследований: только после дополнительного исследования мазка крови с целью выявления шистоцитов было обнаружено 8% фрагментированных эритроцитов (рис. 2) из 1000 эритроцитов; гемоглобин -94 г/л, эритроциты $-3,13x10^{12}$ /л, MCV -86,4 фл, MCH -30,2 пг, MCHC -349 г/л, RDW -17,7%, тромбоциты $-229x10^9$ /л, лейкоциты $-7,29x10^9$ /л, ретикулоциты -3,6%.

Диагноз. Наличие шистоцитов позволило определить механическую (травматическую) природу гемолиза. Была диагностирована гемолитическая анемия, обусловленная фрагментацией эритроцитов, вызванной протезом аортального клапана.

Лечение. Больному было рекомендовано применение фолиевой кислоты, наблюдение за уровнем ферритина сыворотки для своевременного назначения препаратов железа, для уменьшения гемолиза был назначен пентоксифиллин – 1200 мг/сутки.

Пациент был повторно направлен к гематологу (22.07.11) в связи с нарастанием анемии. Данные лабораторных исследований были следующими: гемоглобин – 79 г/л, эритроциты – 3,4х 10^{12} /л, MCV – 74,4 фл, MCH – 23,4 пг, MCHC – 314 г/л, RDW – 14,4%, тромбоциты – 306х 10^9 /л, лейкоциты – 5,2х 10^9 /л.

Больной не принимал рекомендованные ему препараты.

При осмотре наблюдалась бледность кожи и видимых слизистых, выявлена иктеричность склер, селезёнка не пальпировалась.

Повторно назначены пентоксифиллин, фолиевая кислота, препараты железа (с предварительным определением уровня ферритина).

ЗАКЛЮЧЕНИЕ. Шистоциты – неотъемлемый признак гемолитической анемии, связанной с фрагментацией эритроцитов. Шистоциты – это фрагменты эритроцитов изменённой формы и размера с наличием двух-трёх углов и линии разлома. Наиболее типичными формами шистоцита являются шлем, полумесяц, треугольник.

В зависимости от места фрагментации эритроцитов гемолитические анемии делятся на микроангиопатические и макроангиопатические.

Обнаружение шистоцитов в мазке крови — тревожный сигнал для лечащего врача, так как может быть признаком тромботической микроангиопатии, требующей оперативной диагностики и незамедлительного лечения. Врач-лаборант должен немедленно сообщить о такой находке.

ЛИТЕРАТУРА

- 1. Lesesve J.-F., Salignac S., Bordigoni P., Lecompte T., Troussard X. et le Groupe français d'hématologie cellulaire Rôle du biologiste confronté à une recherche de schizocytes. Hématologie 2007; 13(3): 193–204.
- 2. Lesesve J.-F., Fenneteau O., Cynober T., Lecompte T., Grange M.-J., Flandrin G., Troussard X. et le GFHC Rôle du biologiste confronté à la recherche de schizocytes Texte de synthèse et de recommandations du Groupe français d'hématologie cellulaire (GFHC). Ann. Biol. Clin. 2003; 61(5): 505–12.
- 3. Bain B.J. Interactive haematology imagebank. CD. Blackwell Science, 1999.
- 4. *Bull B.S.*, *Kuhn I.N.* The production of schistocytes by fibrin strands (a scanning electron microscope study). Blood 1970; 35(1): 104–11.
- 4a. Zini G., d'Onofrio G., Briggs C., et al. ICSH recommendations for identification, diagnostic value, and quantitation of schistocytes. Int. J. Lab. Hematol. 2011; Nov 15 Epub ahead of print.
- 5. *Briggs C*. Quality counts: New parameters in blood cell counting. Int. Jnl. Lab. Hem. 2009; 31(3): 277–97.
- 6. *Jiang M.*, *Saigo K.*, *Kumagai S.*, et al. Quantification of red blood cell fragmentation by automated haematology analyser XE-2100. Clin. Lab. Haematol. 2001; 23(3): 167–72.
- 7. Burns E.R., Lou Y., Pathak A. Morphologic diagnosis of thrombotic thrombocytopenic purpura. Am. J. Hematol. 2004; 75(1): 18–21.
- 8. Benz E.J. Jr., Wu C.C., Sohani A.R. Case 25-2011: A 62-year-old woman with anemia and paraspinal masses. N. Engl. J. Med. 2011; 365(7): 648–58.
- 9. Heilmann Cl., Geisen U., Benk C. et al. Haemolysis in patients with ventricular assist devices: Major differences between systems. European J. Cardiothoracic Surgery 2009; 36(3): 580–4.

- 10. Koç F., Bekar L., Kadı H., Ceyhan K. Hemolysis and infective endocarditis in a mitral prosthetic valve. Arch. Turk. Soc. Cardiol. 2010; 38(6): 429–31.
- 11. Crawford F.A. Jr., Selby J.H. Jr., Watson D., Joransen J. Unusual aspects of atrial myxoma. Ann. Surg. 1978; 188(2): 240–4.
- 12. *Hoffbrand A.V.*, *Pettit J.E.*, *Hoelzer D.* Roche Grundkurs Hämatologie. Blackwell Wissenschafts-Verlag. Berlin Wien, 1997: 476.
- 13. *Moschcowitz E.* An acute febrile pleiochromic anemia with hyaline thrombosis of the terminal arterioles and capillaries: An undescribed disease. Mount Sinai J. Med. 2003; 70(5): 353–5.
- 14. George J.N. Thrombotic thrombocytopenic purpura. N. Engl. J. Med. 2006; 354(18): 1927–35.
- 15. Terrell D.R., Williams L.A., Vesely S.K. et al. The incidence of thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: All patients, idiopathic patients, and patients with severe ADAMTS-13 deficiency. J. Thromb. Haemost. 2005; 3(7): 1432–6.
- 16. *Scully* M., *Yarranton H.*, *Liesner R.* et al. Regional UK TTP registry: correlation with laboratory ADAMTS 13 analysis and clinical features. Br. J. Haemat. 2008: 142(5): 819–26.
- 17. George J.N. How I treat patients with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Blood 2000; 96(4): 1223–9.
- 18. *Rock G.A.*, *Shumak K.H.*, *Buskard N.A.* et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group. N. Engl. J. Med. 1991; 325(6): 393–7.
- 19. Bell W.R., Braine H.G., Ness P.M., Kikler T.A. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N. Engl. J. Med. 1991; 325(6): 398–403.
- 20. *George J.N., Sadler J.E., Lämmle B.* Platelets: thrombotic thrombocytopenic purpura. Hematology 2002: 315–34.
- 21. Veyradier A., Obert B., Houllier A., Meyer D., Girma J.P. Specific von Willebrand factor-cleaving protease in thrombotic microangiopathies: A study of 111 cases. Blood 2001; 98(6): 1765–72.
- 22. *Peyvandi F., Ferrari S., Lavoretano S.* et al. von Willebrand factor cleaving protease (ADAMTS-13) and ADAMTS-13 neutralizing autoantibodies in 100 patients with thrombotic thrombocytopenic purpura. Br. J. Haemat. 2004; 127(4): 433–9.
- 23. Rieger M., Mannucci P.M., Kremer Hovinga J.A. et al. ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated diseases. Blood 2005; 106(4): 1262–7.
- 24. Scheiflinger F., Knobl P., Trattner B. et al. Nonneutralizing IgM and IgG antibodies to von Willebrand factor-cleaving protease (ADAMTS-13) in a patient with thrombotic thrombocytopenic purpura. Blood 2003; 102(9): 3241–3.

- 25. Ferrari S., Scheiflinger F., Rieger M. et al. Prognostic value of anti-ADAMTS13 antibodies features (Ig isotype, titer and inhibitory effect) in a cohort of 35 adult French patients undergoing a first episode of thrombotic microangiopathy with an undetectable ADAMTS13 activity. Blood 2006; 109(7): 2815–22.
- 26. George J.N., Kremer Hovinga J.A., Terrell D.R., et al. The Oklahoma Thrombotic Thrombocytopenic Purpura-Hemolytic Uremic Syndrome Registry: The Swiss connection. Eur. J. Haematol. 2008; 80(4): 277–86.
- 27. Bennett C.L, Kim B., Zakarija A. et al.; SERF-TTP Research Group. Two mechanistic pathways for thienopyridine-associated thrombotic thrombocytopenic purpura: A report from the SERF-TTP Research Group and the RADAR Project. J. Am. Coll. Cardiol. 2007; 50(12): 1138–43.
- 28. *Sadler J.E., Poncz M.* Idiopathic thrombotic thrombocytopenic purpura/Ch. 124. Antibody-mediated thrombotic disorders: idiopathic thrombotic thrombocytopenic purpura and heparin-induced thrombocytopenia. Williams Hematology, Seventh Edition, McGraw-Hill Medical, 2007: 2031–54.
- 29. Allford S.L., Hunt B.J., Rose P., Machin S.J. Guidelines of the diagnosis and management of the thrombotic microangiopathic haemolytic anaemias. Br. J. Haemat. 2003; 120(4): 556–73.
- 30. Gunther K., Garizio D., Nesara P. ADAMTS13 activity and the presence of acquired inhibitors in human immunodeficiency virus-related thrombotic thrombocytopenic purpura. Transfusion 2007; 47(9): 1710–6.
- 31. *Elliott M.A, Nichols W.L. Jr., Plumhoff E.A.* et al. Posttransplantation thrombotic thrombocytopenic purpura: A single-center experience and a contemporary review. Mayo Clin. Proc. 2003; 78(4): 421–30.
- 32. *George J.N.* How I treat patients with thrombotic thrombocytopenic purpura: 2010. Blood 2010; 116 (20): 4060–9.
- 33. Sarode R., Gottschall J.L., Aster R.H., McFarland J.G. Thrombotic thrombocytopenic purpura: Early and late responders. Am. J. Hematol. 1997; 54(2): 102–7.
- 34. *Thompson C.E., Damon L.E., Ries C.A., Linker C.A.* Thrombotic microangiopathies in the 1980s: Clinical features, response to treatment, and the impact of the human immunodeficiency virus epidemic. Blood 1992; 80(8): 1890–5.
- 35. Dervenoulas J., Tsirigotis P., Bollas G. et al. Thrombotic thrombocytopaenic purpura/hemolytic uremic syndrome (TTP-HUS): Treatment outcome, relapses, prognostic factors. A single-center experience of 48 cases. Ann. Hematol. 2000; 79(2): 66–72.
- 36. *George J.N.* Clinical course and long-term outcomes of thrombotic thombocytopenic purpura/ in: Recent advances in thrombotic thrombocytopenic purpura. Hematology 2004: 407–23.
- 37. Tuncer H.H., Oster R.A., Huang S.T., Marques M.B. Predictors of response and relapse in a cohort of adults with thrombotic thrombocytopenic purpu-

- ra-hemolytic uremic syndrome: A single-institution experience. Transfusion 2007; 47(107): 107–14.
- 38. *George J.N.* Thrombotic Thrombocytopenic Purpura Hemolytic Uremic Syndrome Newsletter. TTP-HUS 1999; N.5 (August). http://moon.ouhsc.edu/jgeorge/TTPNEWS5.htm
- 39. *George J.N.*, *El-Harake M*. Thrombocytopenia due to enhanced platelet destruction by nonimmunologic mechanisms/ Williams Hematology, 1995: 1290–315.
- 40. Баркаган З.С. Геморрагические заболевания и синдромы. М.: Медицина, 1988: 528.
- 41. *Moake J.L.* Idiopathic thrombotic thrombocytopenia purpura/ in: Recent advances in thrombotic thrombocytopenic purpura. Hematology 2004: 407–23.
- 42. Ruutu T., Barosi G., Benjamin R.J. et al. Diagnostic criteria for hematopoietic stem cell transplant-associated microangiopathy: Results of a consensus process by an International Working Group. Haematologica 2007; 92(1): 95–100.
- 43. Φ илатов Л.Б. Тромботические микроангиопатии. Клиническая онкогематология 2008; 4: 366–76.
- 44. Fakhouri F., Vernant J.-P., Veyradier A. et al. Efficiency of curative and prophylactic treatment with rituximab in ADAMTS13 deficient-thrombotic thrombocytopenic purpura: A study of 11 cases. Blood 2005; 106(6): 1932–7.
- 45. Scully M., McDonald V., Cavenagh J. et al. A phase II study of the safety and efficacy of rituximab with plasma exchange in acute acquired thrombotic thrombocytopenic purpura. Blood 2011; 118(7): 1746–53.
- 46. *Scully M.*, *Starke R.*, *Mackie I.*, *Machin S.J.* Acute idiopathic thrombotic thrombocytopenic purpura: predicting relapse and response to treatment. Blood (ASH Annual Meeting Abstracts) 2006; 108(11), abstract 1059.
- 47. Schulman I., Pierce M., Lukens A., Currimbhoy Z. Studies on thrombopoiesis. I. A factor in normal human plasma required for platelet production. Chronic thrombocytopenia due to its deficiency. Blood 1960; 16(1): 943–57.
- 48. *Upshaw J.D. Jr.* Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N. Engl. J. Med. 1978; 298(24): 1350–2.
- 49. *Lotta L.A.*, *Garagiola I.*, *Cairo A.* et al. Genotyp-phenotype correlation in congenital ADAMTS13 deficient patients. Blood (ASH Annual Meeting Abstracts) 2008; 112(11): abstract 273.
- 50. Fujimura Y., Matsumoto M., Kokame K. et al. Pregnancy-induced throm-bocytopenia and TTP, and the risk of fetal death, in Upshaw-Schulman syndrome: A series of 15 pregnancies in 9 genotyped patients. Br. J. Haematol. 2009; 144(5): 742–54.
- 51. Meyer S.C., Jin S., Cao W. et al. Characterization of five homozygous ADAMTS13 mutations in hereditary thrombotic thrombocytopenic purpura to-

- wards a phenotype-genotype correlation? Blood (ASH Annual Meeting Abstracts) 2008; 112(11): abstract 274.
- 52. Fujimura Y., Matsumoto M. Registry of 919 Patients with Thrombotic Microangiopathies across Japan: Database of Nara Medical University during 1998–2008. Inter. Med. 2010; 49(1): 7–15.
- 53. *Loirat C., Girma J.P., Desconclois C.* et al. Thrombotic thrombocytopenic purpura related to severe ADAMTS13 deficiency in children. Pediatr. Nephrol. 2009; 24(1): 19–29.
- 54. Furlan M., Lämmle B. Haemolytic-uraemic syndrome and thrombotic thrombocytopenic purpura new insights into underlying biochemical mechanisms. Nephrol. Dial. Transplant. 2000; 15(8): 1112–4.
- 55. Richter J., Strandberg K., Lindblom A. et al. Successful management of a planned pregnancy in severe congenital thrombotic thrombocytopaenic purpura: the Upshaw–Schulman syndrome. Transfusion Medicine 2011; 21(3): 211–3.
- 56. *Gasser C., Gautier E., Steck A.*, et al. Hämolytisch-urämische Syndrome: Bilaterale Nierenrindennekrosen bei akuten erworbenen hämolytischen Anämien. Schweiz. Med. Woch. 1955; 85(38–39): 905–9.
- 57. *Noris M., Remuzzi G.* Hemolytic uremic syndrome. J. Am. Soc. Nephrol. 2005; 16(4): 1035–50.
- 58. Bae W.K., Lee Y.K., Cho M.S. et al. A case of hemolytic uremic syndrome caused by Escherichia coli O104:H4. Yonsei Med. J. 2006; 47(3): 437–9.
- 59. *Mellmann A., Bielaszewska M., Köck R.* et al. Analysis of collection of hemolytic uremic syndrome—associated enterohemorrhagic *Escherichia coli*. Emerging Infectious Diseases 2008; 14(8): 1287–90.
- 60. *Karpac C.A.*, *Li X.*, *Terrell D.R.* et al. Sporadic bloody diarrhoea-associated thrombotic thrombocytopenic purpura-haemolytic uraemic syndrome: an adult and paediatric comparison. Br. J. Haematol. 2008; 141(5): 696–707.
- 61. *Chang H.-G. H., Tserenpuntsag B. Kacica M.* et al. Hemolytic uremic syndrome incidence in New York. Emerging Infectious Diseases 2004; 10(5): 928–31.
- 62. Dundas S., Todd W.T.A., Stewart A.I. et al. The Central Scotland Escherichia Coli O157:H7 outbreak: Risk factors for the hemolytic uremic syndrome and death among hospitalized patients. Clin. Inf. Disease 2001; 33(7): 923–31.
- 63. *Zheng X.L.*, *Sadler J.E.* Pathogenesis of thrombotic microangiopathies. Annu. Rev. Pathol. 2008; 3: 249–77.
- 64. *Gruppo R.A., Rother R.P.* Eculizumab for congenital atypical hemolytic—uremic syndrome. N. Engl. J. Med. 2009; 360(20): 545–6.
- 65. Lapeyraque A.-L., Malina M., Fremeaux-Bacchi V. et al. Eculizumab in severe shiga-toxin—associated HUS. N. Engl. J. Med. 2011; 364(26): 2561–3.
- 66. Ohanian M., Cable C., Halka K. Eculizumab safely reverses neurologic impairment and eliminates need for dialysis in severe atypical hemolytic uremic syndrome. Clinical Pharmacology: Advances and Applications 2011; 3: 5–12.

- 67. Moake J., Baker K.R. Thrombotic thrombocytopenic purpura, hemolyticuremic syndrome, and HELLP/ Ch.32. Critical care obstetrics. Ed. by M. Belfort. G. Saade, M. Foley, J. Phelan, G. Dildy. Fifth edition. Wiley-Blackwell, 2010: 407–24.
- 68. Weinstein L. Syndrome of hemolysis, elevated liver enzymes, and low platelet count: A severe consequence of hypertension in pregnancy. Am. J. Obstet. Gynecol. 1982; 142(2): 159–67.
- 69. Witlin A.G., Sibai B.M. Diagnosis and management of women with hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome. Hospital Physician 1999; 2: 40–5, 49.
- 70. Nabhan C., Kwaan H.C. Current concepts in the diagnosis and management of thrombotic thrombocytopenic purpura. Hematol./Oncol. Clin. N. Am. 2003; 17(1): 177–99.
- 71. Baker K.R., Moake J. Hemolytic anemia resulting from physical injury to red cells. Ch. 49. Williams Hematology, Seventh Edition, McGraw-Hill Medical, 2007: 1856.
- 72. Идельсон Л.И. Гемолитические анемии, связанные с механическим повреждением эритроцитов. Руководство по гематологии. 1-3тт. Под. ред. А.И. Воробьева. М.: Ньюдиамед, 2007: 1275.
- 73. Maraj R., Jacobs L.E., Ioli A.L., Kotler M. Evaluation of hemolysis in patients with prosthetic heart valves. Clin. Cardiol. 1998; 21(6): 387–92.
- 74. Butchart E.G., Gohlke-Bärwolf C., Antunes M.J. et al. Recommendations for the management of patients after heart valve surgery. Europ. Heart J. 2005; 26(22): 2463–71.
- 75. Josa M., Castellá M., Paré C. et al. Hemolysis in mechanical bileaflet prostheses: Experience with the bicarbon valve. Ann. Thorac. Surg. 2006; 81(4): 1291 - 6.
- 76. Иванов А.С., Тараян М.В., Ефремов Е.С. и др. Острый внутрисосудистый гемолиз после эмболизации открытого артериального протока окклюдером системы "Flipper". Хирургия 2008, 4: 59–61.
- 77. Бэйн Б.Дж., Гупта Р. Справочник гематолога/ Пер. с англ. М.: Бином, 2004: 280.
- 78. Φ ридман M.Л. Гемолитическая анемия. Болезни крови у пожилых: Пер.с англ./ Под. ред. М.Дж. Дэнхема, И. Чанарина. М.: Медицина, 1989: 352.
- 79. Eyster E., Rothchild J., Mychajliw O. Chronic intravascular hemolysis after aortic valve replacement: Long-term study comparing different types of ballvalve prostheses. Circulation 1971; 44(4): 657–65.
- 80. Lam B.-K., Cosgrove D.M., Bhudia S.K., Gillinov A.M. Hemolysis after mitral valve repair: Mechanisms and treatment. Ann. Thorac. Surg. 2004; 77(1): 191-5.
- 81. Shapira Y., Vaturi M., Sagie A. Hemolysis associated with prosthetic heart valves: A review. Cardiol. Rev. 2009; 17(3): 121–4.

- 82. *Hirawat S., Lichtman S.M.*, Allen *S.L.* Recombinant human erythropoietin use in hemolytic anemia due to prosthetic heart valves: A promising treatment. Am. J. Hemat. 2001; 66(3): 224–6.
- 83. *Golbasi I., Turkay C., Timuragaoglu A.* et al. The effect of pentoxifylline on haemolysis in patients with double cardiac prosthetic valves. Acta Cardiol. 2003; 58(5): 379–83.